
Software Engineering

and Architecture

Some General Observations

on the Mandatory

Advice for Epsilon

• EpsilonStone is the ‘introduce test stub to handle indirect

input (a random number)’ exercise

• My advice is

– Study the Weekplan 6 kata on one way of how not to do it!

– A Stub is a replacement for the behavior not under test control

• And nothing more

– That is: Make the ‘indirect input algorithm’ as small as possible

• Encapsulate the minimum behavior

AU CS Henrik Bærbak Christensen 2

From the Trenches

World’s worst footnote ☺

AU CS Henrik Bærbak Christensen 4

• Benefits of this solution?

• Critique of this solution?

• Morale

– Naming matters

– Duplication matters

AU CS Henrik Bærbak Christensen 5

Remember: References

• What’s the issue?

AU CS Henrik Bærbak Christensen 6

Encapsulate What Varies !

• Make your variability points as precise as

possible

– What is the issue here?

• Alternative way of

mutating Game?

AU CS Henrik Bærbak Christensen 7

If possible, let Game do it

• If you can compute a value in your strategy, then the

assignment is in the Game object

– Which is much a more cohesive way

• Game changes game state; instead of some strategy

AU CS Henrik Bærbak Christensen 8

In StandardGame:

Encapsulate What Varies

• Another example

• What will the

next strategy

look like?

AU CS Henrik Bærbak Christensen 9

Next Strategy

• Code duplication!

AU CS Henrik Bærbak Christensen 10

ISO 9126: Stability and Changeability
capabilities are suffering 

Cohesion? Coupling?

• Try to avoid one variant’s requirements affect all others…

• Let Game do what the Game must do…

– Cohesion again.

• What is the issue (1)? What is the issue (2)?

AU CS Henrik Bærbak Christensen 11

What is the Variability Mgt?

• Src-code

copy?

• Parametric?

• Polymorphic?

• Composi-

tional?

AU CS Henrik Bærbak Christensen 12

“Inner” and “Outer”

Encapsulation:

Who can do what?

A Previous Year Example

• What happens when I want a PiStone variant?

AU CS Henrik Bærbak Christensen 14

Last Year Example

• Change by modification 
• Code must be changed every time a new variant is envisioned…

AU CS Henrik Bærbak Christensen 15

else if (var.equals(“PiStone”)) {

Frameworks

• What is the process in the mandatory exercises?

– To use TDD and compositional design to transform an

AlphaStone application into a HotStone framework

• Frameworks are

– Reusable software designs and implementations

– Must be reconfigurable from the outside

• Just like a TV set or a mobile phone

• Example

– Android Google’s smartphone OS

– You do not call Google to make them rewrite their constructor in

order to introduce the App for your HCI course, do you!?!

CS@AU Henrik Bærbak Christensen 16

How do I?

• Switch from channel TV2 to DR on my Samsung TV set?

– A) Push the Button ‘3’ on the TV’s remote control interface?

– B) Call Samsung to tell them to send a man to re-solder the wire

inside the TV set?

• This code is using method B

CS@AU Henrik Bærbak Christensen 17

Open/Closed

• Open for Extension (I can adapt the framework)

• Closed for Modification (But I cannot rewrite the code)

• Change by addition, not by modification

• So

• … is not suitable for implementing frameworks…

– I have to open the TV to solder the wires inside 

– You have to call Google to make your HCI project app 

CS@AU Henrik Bærbak Christensen 18

So…

• Keep StandardGame, (StandardHero, StandardCard), …

closed for modification! General enough to handle many

variants

– They form the framework that is reused as-is

• Allow adapting HotStone to a new variant by addition

– I can code a new DeckBuildingStrategy which allows users to

load a deck that they have crafted in a deck editor…

– I can code a PriestHero which can heal minions on field…

– And provide my strategies in the constructor of your StdGame

– And it will do the right thing…

CS@AU Henrik Bærbak Christensen 19

You Can Do More Outside

Inner and Outer have different Rules!

Or

Switches are OK in Strategies…

AU CS Henrik Bærbak Christensen 20

Switching on Variants

• … is parametric design, right?

AU CS Henrik Bærbak Christensen 21

Compositional Variant

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 22

HotStone Framework
Code:

GammaStone Delegates

ThaiDanishHeroStrategy

Compositional Variant

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 23

HotStone Framework
Code:

GammaStone Delegates

ThaiDanishHeroStrategy

Compositional Variant

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 24

HotStone Framework
Code:

GammaStone Delegates

ThaiDanishHeroStrategy

This is a much better design!
Why?

Because a) No hard binding in Game
b) GammaStone requirements are expressed

explicitly in a single piece of code that bears the
correct name!

Example

• From the trenches

• But other issues

– Coupling is too

hard…

AU CS Henrik Bærbak Christensen 25

Compositional Variant

• And you can avoid the switching completely

– Put the ‘power strategy’ into the Hero implementation instead;

fetch it, and then apply it…

– Requires a ‘HeroBuildingStrategy’ to create the proper Hero

types, then…

• Critique: Approaching is a way to implement subclassing

by hand ☺…
AU CS Henrik Bærbak Christensen 26

Inner and Outer

• Keep inner code (framework code) clean of variability

switching code; have it in the outer code (delegates)!

AU CS Henrik Bærbak Christensen 27

HotStone Framework
Code:

General Game
implementation,
general Hero and

Card
implementations

Delegates

HeroAction

WinnerDetermination
WinnerDetermination

….

Closed for
Modification

Open for
Extension

From Previous Years

Left for yourself to review…

From the Trenches

• Evident Test?

• (No, it is

not all bad,

this, but…)

AU CS Henrik Bærbak Christensen 29

Recommendations

• Use GWT

– Some parts are a bit obscure here

– // Given game has drawn all cards to the hand

– // When I select all cards of given name for given player

– // Then there are only two

– // Then the two cards are

// unique references

AU CS Henrik Bærbak Christensen 30

Recommendations

• If possible – use Unit Testing

– Deck building strategy can just return a list of cards

• And thus can be unit tested

– Ala: create deck strategy, get deck, test it

– No Game instance involved

AU CS Henrik Bærbak Christensen 31

Recommendations

• Make private methods to do ‘One Level of Abstraction
– private List<Card> getAllCardsOfPlayerWithName(Player who, String name);

AU CS Henrik Bærbak Christensen 32

My Tests

• Unit testing + private helper method.

• Note! This is not how the first test case looked like; I have

iterated on this test to clean up and make evident and do

One Level Of Abstraction

AU CS Henrik Bærbak Christensen 33

And note the ‘formatting’

• Note! The visual layout of the test closely matches that of

the tabular format, making x-checking it easy

– Analyzability

AU CS Henrik Bærbak Christensen 34

The Verify method

• Looks like

AU CS Henrik Bærbak Christensen 35

Single Responsibility

• Who is responsible for validating game rules? Game!

• What is wrong?

AU CS Henrik Bærbak Christensen 36

Alpha Gamma

Single Responsibility

• Here: Game does half, Strategy does half of validation 

• Result

– Code duplication

– Validation in two places

AU CS Henrik Bærbak Christensen 37

Alpha Gamma

ISO 9126: Stability and Changeability
capabilities are suffering 

Another Attempt

• Game has this ‘configuration’ of heroes’ Power…

• Drawing from a

single ‘HeroType’

• Pro/Cons?

AU CS Henrik Bærbak Christensen 38

Variability Technique Used?

• What about this one? From the ‘StandardGame’

AU CS Henrik Bærbak Christensen 39

